Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species.

Identifieur interne : 000049 ( Main/Exploration ); précédent : 000048; suivant : 000050

To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species.

Auteurs : Eric L. Kruger [États-Unis] ; Ken Keefover-Ring [États-Unis] ; Liza M. Holeski [États-Unis] ; Richard L. Lindroth [États-Unis]

Source :

RBID : pubmed:32060731

Descripteurs français

English descriptors

Abstract

Although chemical deterrents to herbivory often exact costs in terms of plant growth, the manner in which those costs arise, and their physiological relationship to other functional traits, remain unclear. In the absence of appreciable herbivory, we examined interrelationships among chemical defense levels and other foliar functional traits (e.g., light-saturated photosynthesis, specific leaf area, nitrogen concentration) as co-determinants of tree growth and, by extension, competitive ability in high-density populations comprising 16 genotypes of Populus tremuloides. Across genotypes, concentrations of chemical defenses were not significantly related to other leaf functional traits, but levels of the salicinoid phenolic glycosides (SPGs) salicin, salicortin and tremulacin were each negatively correlated with relative mass growth (RMG) of aboveground woody tissue (P ≤ 0.001). RMG, in turn, underpinned 77% of the genotypic variation in relative height growth (our index of competitive ability). RMG was also positively related to light-saturated photosynthesis (P ≤ 0.001), which, together with the three SPGs, explained 86% of genotypic RMG variation (P ≤ 0.001). Moreover, results of a carbon balance simulation indicated that costs of resource allocation to SPGs, reaching nearly a third of annual crown photosynthesis, were likely mediated by substantial metabolic turnover, particularly for salicin. The lack of discernible links between foliar defense allocation and other (measured) functional traits, and the illustrated potential of metabolic turnover to reconcile influences of SPG allocation on RMG, shed additional light on fundamental physiological mechanisms underlying evolutionary tradeoffs between chemical defense investment and competitive ability in a foundation tree species.

DOI: 10.1007/s00442-020-04622-y
PubMed: 32060731


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species.</title>
<author>
<name sortKey="Kruger, Eric L" sort="Kruger, Eric L" uniqKey="Kruger E" first="Eric L" last="Kruger">Eric L. Kruger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI, 53706, USA. elkruger@wisc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keefover Ring, Ken" sort="Keefover Ring, Ken" uniqKey="Keefover Ring K" first="Ken" last="Keefover-Ring">Ken Keefover-Ring</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011</wicri:regionArea>
<wicri:noRegion>86011</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32060731</idno>
<idno type="pmid">32060731</idno>
<idno type="doi">10.1007/s00442-020-04622-y</idno>
<idno type="wicri:Area/Main/Corpus">000455</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000455</idno>
<idno type="wicri:Area/Main/Curation">000455</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000455</idno>
<idno type="wicri:Area/Main/Exploration">000455</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species.</title>
<author>
<name sortKey="Kruger, Eric L" sort="Kruger, Eric L" uniqKey="Kruger E" first="Eric L" last="Kruger">Eric L. Kruger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI, 53706, USA. elkruger@wisc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keefover Ring, Ken" sort="Keefover Ring, Ken" uniqKey="Keefover Ring K" first="Ken" last="Keefover-Ring">Ken Keefover-Ring</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011</wicri:regionArea>
<wicri:noRegion>86011</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Phenotype (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phenotype</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Phénotype</term>
<term>Populus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although chemical deterrents to herbivory often exact costs in terms of plant growth, the manner in which those costs arise, and their physiological relationship to other functional traits, remain unclear. In the absence of appreciable herbivory, we examined interrelationships among chemical defense levels and other foliar functional traits (e.g., light-saturated photosynthesis, specific leaf area, nitrogen concentration) as co-determinants of tree growth and, by extension, competitive ability in high-density populations comprising 16 genotypes of Populus tremuloides. Across genotypes, concentrations of chemical defenses were not significantly related to other leaf functional traits, but levels of the salicinoid phenolic glycosides (SPGs) salicin, salicortin and tremulacin were each negatively correlated with relative mass growth (RMG) of aboveground woody tissue (P ≤ 0.001). RMG, in turn, underpinned 77% of the genotypic variation in relative height growth (our index of competitive ability). RMG was also positively related to light-saturated photosynthesis (P ≤ 0.001), which, together with the three SPGs, explained 86% of genotypic RMG variation (P ≤ 0.001). Moreover, results of a carbon balance simulation indicated that costs of resource allocation to SPGs, reaching nearly a third of annual crown photosynthesis, were likely mediated by substantial metabolic turnover, particularly for salicin. The lack of discernible links between foliar defense allocation and other (measured) functional traits, and the illustrated potential of metabolic turnover to reconcile influences of SPG allocation on RMG, shed additional light on fundamental physiological mechanisms underlying evolutionary tradeoffs between chemical defense investment and competitive ability in a foundation tree species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32060731</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>192</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species.</ArticleTitle>
<Pagination>
<MedlinePgn>893-907</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-020-04622-y</ELocationID>
<Abstract>
<AbstractText>Although chemical deterrents to herbivory often exact costs in terms of plant growth, the manner in which those costs arise, and their physiological relationship to other functional traits, remain unclear. In the absence of appreciable herbivory, we examined interrelationships among chemical defense levels and other foliar functional traits (e.g., light-saturated photosynthesis, specific leaf area, nitrogen concentration) as co-determinants of tree growth and, by extension, competitive ability in high-density populations comprising 16 genotypes of Populus tremuloides. Across genotypes, concentrations of chemical defenses were not significantly related to other leaf functional traits, but levels of the salicinoid phenolic glycosides (SPGs) salicin, salicortin and tremulacin were each negatively correlated with relative mass growth (RMG) of aboveground woody tissue (P ≤ 0.001). RMG, in turn, underpinned 77% of the genotypic variation in relative height growth (our index of competitive ability). RMG was also positively related to light-saturated photosynthesis (P ≤ 0.001), which, together with the three SPGs, explained 86% of genotypic RMG variation (P ≤ 0.001). Moreover, results of a carbon balance simulation indicated that costs of resource allocation to SPGs, reaching nearly a third of annual crown photosynthesis, were likely mediated by substantial metabolic turnover, particularly for salicin. The lack of discernible links between foliar defense allocation and other (measured) functional traits, and the illustrated potential of metabolic turnover to reconcile influences of SPG allocation on RMG, shed additional light on fundamental physiological mechanisms underlying evolutionary tradeoffs between chemical defense investment and competitive ability in a foundation tree species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kruger</LastName>
<ForeName>Eric L</ForeName>
<Initials>EL</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2463-9231</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI, 53706, USA. elkruger@wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keefover-Ring</LastName>
<ForeName>Ken</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holeski</LastName>
<ForeName>Liza M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="Y">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Competition</Keyword>
<Keyword MajorTopicYN="N">Functional traits</Keyword>
<Keyword MajorTopicYN="N">Growth</Keyword>
<Keyword MajorTopicYN="N">Photosynthesis</Keyword>
<Keyword MajorTopicYN="N">Salicinoid phenolic glycosides</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32060731</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-020-04622-y</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-020-04622-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2011 Oct;31(10):1114-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21990024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2017 Apr 28;68:513-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28142282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23115654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Feb;35(2):112-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25595753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1853-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Jun;51(347):1089-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Nov 22;230(4728):895-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17739203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Aug 30;7:12570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27573094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Jun;35(6):664-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19462207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Mar;36(3):286-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20177744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):895-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Feb;109(3):433-441</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Apr;19(4_5):243-252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 May;18(5):250-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24739022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 2003 Mar;78(1):23-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12661508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1984 Mar;10(3):499-520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 May;160(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Jul;41(7):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 May;119(3):408-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1992 Feb;83(4):443-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Apr;15(4):1117-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24271998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2014 Nov;176(3):811-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25173086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2014 Mar;20(3):908-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24130066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 May;22(7):435-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 May;97(5):813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Nov;88(3):401-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1989 May;43(3):573-585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 22;428(6985):821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5685-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21389269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1994 Jun;20(6):1281-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24242341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3443-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Aug;25(8):981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15929929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2012;2012:pls025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23050073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2016 Jun;181(2):381-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26886130</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Kruger, Eric L" sort="Kruger, Eric L" uniqKey="Kruger E" first="Eric L" last="Kruger">Eric L. Kruger</name>
</noRegion>
<name sortKey="Holeski, Liza M" sort="Holeski, Liza M" uniqKey="Holeski L" first="Liza M" last="Holeski">Liza M. Holeski</name>
<name sortKey="Keefover Ring, Ken" sort="Keefover Ring, Ken" uniqKey="Keefover Ring K" first="Ken" last="Keefover-Ring">Ken Keefover-Ring</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000049 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000049 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32060731
   |texte=   To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32060731" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020